Non-Mendelian Genetics

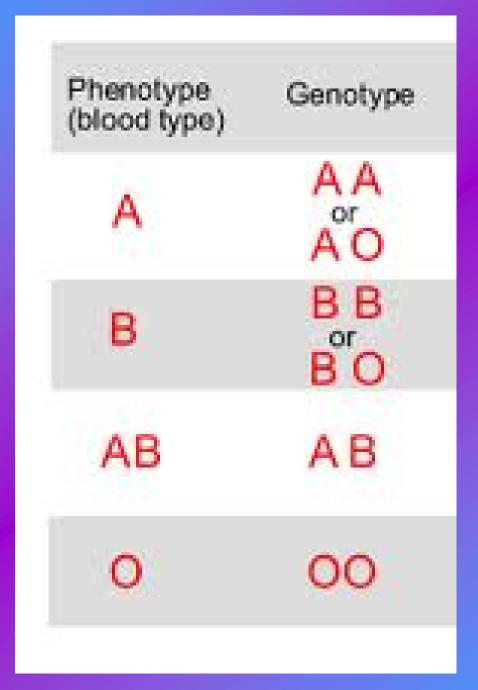
Non-Mendelian Genetics

- Some traits don't follow the simple dominant/recessive rules that Mendel first applied to genetics.
- Traits can be controlled by more than one gene.
- Some alleles are neither dominant nor recessive.

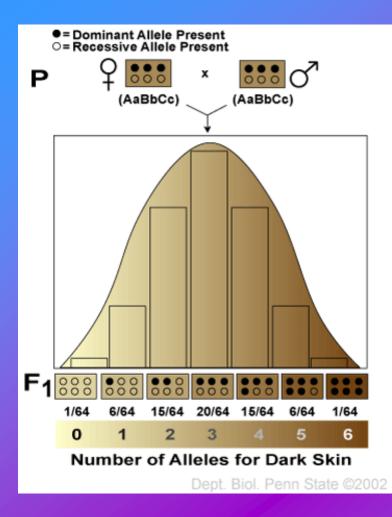
Incomplete Dominance

- One allele is not completely dominant over another.
- The heterozygous phenotype is a **blending** of the two homozygous phenotypes.
- Example: four o'clock flowers
- rr=red
- ww=white
- rw=pink (blending of the two alleles)

Codominance


- Two alleles are both expressed as a dominant phenotype
- Coat color in cows
 - RR: Red
 - WW: White
 - RW: Roan, white with red spots (NOT pink!)

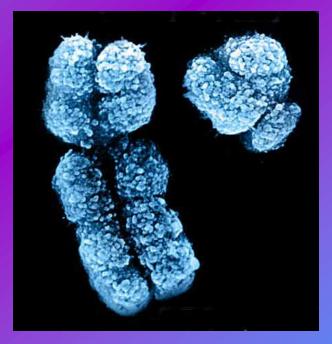
Multiple-Allele


-More than one allele controls a trait

-Ex. Blood type
A, B, or O (I^A, I^B, i)
A and B are co-dominant and both are dominant to O

Polygenic Inheritance

- Polygenic inheritance—trait controlled by more than one gene
 - Ex skin color—additive effects of up to 6 genes—each gene determines amount of melanin produced
 - -Eye color



Sex-Linked Inheritance

Review

- Males have an X and a Y chromosome
- Females have two X chromosomes

 These chromosomes determine sex, so genes located on these chromosomes are known as sex-linked genes. The X chromosome is much larger than the Y, so it carries more genes than the Y chromosome.

•Disorders that are sex-linked are much more common in males, because they would only need 1 recessive allele to have the trait; rather than the two recessive alleles the females need.

Ex. Colorblindness, hemophilia

Carried on X chromosome—all males inherit the disorder, females only have it if get both recessive X chromosomes